A Comparative Evaluation of Data-driven Models in Translation Selection of Machine Translation

نویسندگان

  • Yuseop Kim
  • Jeong Ho Chang
  • Byoung-Tak Zhang
چکیده

We present a comparative evaluation of two data-driven models used in translation selection of English-Korean machine translation. Latent semantic analysis(LSA) and probabilistic latent semantic analysis (PLSA) are applied for the purpose of implementation of data-driven models in particular. These models are able to represent complex semantic structures of given contexts, like text passages. Grammatical relationships, stored in dictionaries, are utilized in translation selection essentially. We have used k-nearest neighbor (k-NN) learning to select an appropriate translation of the unseen instances in the dictionary. The distance of instances in k-NN is computed by estimating the similarity measured by LSA and PLSA. For experiments, we used TREC data(AP news in 1988) for constructing latent semantic spaces of two models and Wall Street Journal corpus for evaluating the translation accuracy in each model. PLSA selected relatively more accurate translations than LSA in the experiment, irrespective of the value of k and the types of grammatical relationship.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of English-Persian Translation of Neural Google Translation

Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...

متن کامل

The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language

Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...

متن کامل

A new model for persian multi-part words edition based on statistical machine translation

Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...

متن کامل

On the Translation Quality of Google Translate: With a Concentration on Adjectives

Translation, whose first traces date back at least to 3000 BC (Newmark, 1988), has always been considered time-consuming and labor-consuming. In view of this, experts have made numerous efforts to develop some mechanical systems which can reduce part of this time and labor. The advancement of computers in the second half of the twentieth century paved the ground for the invention of machine tra...

متن کامل

A Comparative Study of Nominalization in an English Applied Linguistics Textbook and its Persian Translation

Among the linguistic resources for creating grammatical metaphor, nominalization rewords   processes and properties metaphorically as nouns within the experiential metafunction of language. Following Halliday's (1998a) classification of grammatical metaphor, the current study investigated nominalization exploited in an English applied linguistics textbook and its corresponding Persian translati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002